Dec
30
Modern chemistry in the CDK: beyond the two-atom bond
Rich recently blogged about the limitations of the two-atom bond representation often used in chemoinformatics, triggered by the four ferrocene entries in PubChem. In reply to himself, Rich described FlexMol, an XML language that can describe bond systems that involve more than two atoms.
Obviously, the problems originates from the lack of mathematical knowledge of chemists: the current chemoinformatics heavily depends on graph theory, where each atom is a vertex and each bond an edge. This has the advantage that we can borrow all algorithms that work with graph representations, such as Dijkstra's algorithm to find the shortest path between two vertices. Or, in chemical language, an algorithm to calculate how many bonds two atoms are apart in a molecule.
Obviously, the problems originates from the lack of mathematical knowledge of chemists: the current chemoinformatics heavily depends on graph theory, where each atom is a vertex and each bond an edge. This has the advantage that we can borrow all algorithms that work with graph representations, such as Dijkstra's algorithm to find the shortest path between two vertices. Or, in chemical language, an algorithm to calculate how many bonds two atoms are apart in a molecule.